TOPIK 4
MODEL MANAJEMEN MUTU

QUALITY MANAGEMENT FRAMEWORK

Sistem Evaluasi Diri

- Sasaran dan Visi Organisasi
- Misi
- Faktor Kritis untuk Sukses
 - Proses kritis
 - Tool of TQM
 - ISO 9000

- Analisis Gap Evaluasi Diri
- Proses Analisa
- Identifikasi Kesempatan untuk Perbaikan

Analisis Pengukuran Kinerja

Benchmarking

Investasi SDM

Kebutuhan Pengembangan SDM

Umpam Balik

- Visualisasi Proses Ideal
 - Business Process Re-engineering
 - Apakah dibutuhkan terobadan
 - Y
 - N
 - Perbaikan Incremental

- Pendidikan, Pelatihan & Pengembangan
MODEL MANAJEMEN KUALITAS

- ISO 9000
- Deming Prize Model
- Malcolm Baldrige Award
- EFQM

ISO 9000

Quality Management (System) Structure

Actions of measurement, evaluation, and improvement
ISO 9000

Management responsibility
- Commitment
- Customer oriented
- Quality policy
- Planning
- Responsibility, authority & communication
- Management review

Resource management
- Availability
- Human resource
- Infrastructure
- Work environment
ISO 9000

Product realization
- Planning
- Customer process
- Design & development
- Purchasing
- Production & services
- Control, monitoring & measurement tools

ISO 9000

Measurement, evaluation & improvement
- Monitoring & measurement
- Control of non-conformance
- Data analysis
- Improvement
Deming Prize & Japan Quality Award

- Japan Union of Scientist & Engineer (JUSE) memberikan Deming Prize Award (sejak 1951) untuk individual dan organisasi yang memiliki kontribusi pada pengembangan kualitas.
- Japan Productivity Center for Socio-Economic Development (JPC-SED) mengambil inisiatif untuk Japan Quality Aaward sejak 1995.
The Japan Quality Award Framework

2 Understanding & Interaction with Customers & Markets

1 Management Vision & Leadership

3 Strategic Planning & Deployment

4 Human Resource Management & Learning Environment

5 Process Management

6 Sharing and Utilization of Information

7 Results of Enterprise Activities

8 Customer Satisfaction

Copyright: JPC-SED (2001), www.jpc-sed.or.jp/eng/

The Malcolm Baldrige National Quality Award

- MBNQA is an annual U.S. national quality award created by public law in 1987.
In 1991 the European Quality Award was established and administered by the European Foundation for Quality Management (EFQM) to recognize companies with the highest level of commitment to quality in Europe.

The EFQM Model for Business Excellence is used by European organizations to assess the concepts of TQM.
The EFQM Excellence Model

INNOVATION AND LEARNING

LEADERSHIP

PEOPLE

POLICY & STRATEGY

PARTNERSHIPS & RESOURCES

PROCESSES

PEOPLE RESULTS

CUSTOMER RESULTS

SOCIETY RESULTS

KEY PERFORMANCE RESULTS

ENABLERS

RESULTS

COPYRIGHT: EFQM (2001), www.efqm.org

The European Quality Award

- Product oriented
The European Quality Award

- **Process oriented**

- **System oriented**
The European Quality Award

- Chain oriented

The European Quality Award

- Total Quality Management oriented
The European Quality Award Assessment

- **Contoh: Indonesian manufacturing firms**

![Diagram showing European Quality Award Assessment categories with Case 1 MEC, Case 2 HEC, and Case 3 AAC]

Research on factors of quality management model

![Diagram showing factors of quality management model with Enablers and Results comparison]

Research on factors of quality management model

STRUKTUR SISTEM KUALITAS & ANTARMUKA (INTERFACE)

QUALITY PLANNING ROADMAP

- Establish quality goals
- Identifikasi konsumen
- Identifikasi kebutuhan konsumen
- Kembangkan karakteristik produk
- Kembangkan karakteristik proses
- Buat kendali proses, transfer ke operasi

- Daftar quality goals
- Daftar konsumen
- Daftar kebutuhan konsumen
- Desain produk
- Desain proses
- Proses siap untuk produk
QUALITY FUNCTION DEPLOYMENT

1. HOQ

Customer requirements

Operational goals/targets

Relationship Key:
- Strong
- Moderate
- Weak

Co-relationship Key:
- Positive
- Negative

Technical requirements

Critical part requirements

Part specifications

Part weights

Wall thickness

Material density

Material expansion rate

Material shear rate

Logo durability

Logo precision

Logo
color

Column
width

2. Part Deployment

Temperature at hand: 110 °F max.
Fluid temp. loss over time: 3 °F min.
Indent/force relation: 0.42 pounds
Force/force relation: 0.8 pounds
Logo precision: 95% faster

201
202
203
204
205
206
207
208
209
210
211
3. Process Deployment

- Critical process requirements
- Critical part requirements and specifications
- Material density
- Material expansion rate
- Part size
- Logo definition
- Process specifications
- Process capability

4. Production Planning

- Product planning matrix
- Design experiments
- Design for assembly and manufacturing
- Fault tree analysis
- Design failure modes and effects analysis
- Concept selection processes
- Machine capability studies
- Process capability
- SPC
- Process failure modes and effects analysis

Manufacturer planning document
- Quality assurance planning
- Maintenance instructions
- Operator instructions
- Other
- What
- How
LANGKAH 2
PENGENDALIAN KUALITAS

Problem Solving Cycle: PDCA Cycle

Continuous Improvement